ECW-Z1000#  $\begin{cases} -A \\ -B \\ -C \end{cases}$ 

# **User's Guide**

(Version 1.1)

|    |                                       | 1 Product Appearance and Type Nomination                           | <br>P3  |
|----|---------------------------------------|--------------------------------------------------------------------|---------|
|    |                                       | 2. Installing Method and Working Principle                         | <br>P5  |
|    |                                       | 3、Schematic Diagram of the Controller Appearance                   | <br>P6  |
| ເຄ |                                       | 4、Schematic Diagram of the Sensor Appearance and Installing Method | <br>P6  |
| ţ  | Product Overview                      | A. Standard "Disc" type Intelligent Load Sensor                    | <br>P7  |
|    |                                       | B. Standard Character " $\pm$ " type Intelligent Tension Sensor    | <br>P9  |
| Le |                                       | C. Standard "Convex" type Intelligent Stress Sensor                | <br>P10 |
| nt |                                       | D. Standard Character "—" type Intelligent Load Sensor             | <br>P11 |
| 0  |                                       | 5、Descripyion of the System Controller Terminals                   | <br>P12 |
| Ŭ  |                                       | 6、System Structure and Installation Schematic Diagram              | <br>P15 |
| F  |                                       | 7、Install Method of Sensor and Controller                          | <br>P15 |
| 0  |                                       | 8、System Adjustment and Explanation (Autotune)                     | <br>P16 |
| 0  | Installation & Adjustment             | ①.Initialization: Selection of Compensating Method                 | <br>P17 |
| Ϊ  |                                       | 2.Lock the Dead Weight of the Car                                  | <br>P18 |
| ak |                                       | 3.No Load Autotune Operation Mode                                  | <br>P18 |
| Ĕ  |                                       | (4).Rated Load Autotune Operation Mode                             | <br>P19 |
| -  | Implication and Adjustment            | 9、Adjustment of the System Parameters                              | <br>P19 |
|    | Method of the Operation<br>Parameters | 10、Explanation of the Meaning of Parameter P                       | <br>P20 |
|    | Indicating Code Explanation           | 11、Explanation of System Normal Operation Code                     | <br>P25 |
|    | _                                     |                                                                    |         |

|                        | 12、Explanation of the Code of Other Operations and Fault                                              |          | P26 |
|------------------------|-------------------------------------------------------------------------------------------------------|----------|-----|
|                        | 13、Brief Analysis of Other Status                                                                     |          | P27 |
|                        | 14. How to repeat the Autotune operation for the system?                                              |          | P28 |
| How To Do?             | 15. How to do Rated Load Autotune by adopting 20% rated load?                                         |          | P28 |
|                        | 16. How to do "Weight Setting" system Autotune for Character " $-$ " type Sensor? (Just for Z1000#-D) |          | P28 |
|                        | 17、 How to Obtain the Product Version Code?                                                           |          | P29 |
|                        | 18、 Main characteristics                                                                              |          | P29 |
| System Characteristics | 19、Technical Specifications                                                                           |          | P30 |
| Promise                |                                                                                                       |          | P31 |
| Others                 |                                                                                                       |          | P31 |
| Attached Drawings      | [1]、[2]、[3]                                                                                           | P33、P34、 | P35 |

**Caution:** This system is applicable an elevator with **fixed car platform**. Before use, be sure to read the following sections carefully. **Note:** Under any condition, our part is just responsible for the quality of product in the period of guarantee service.

**Declaration:** For the reason of technology advancement, our company reserves the right of improving product. As for the relevant technical parameters, Please refer to the technical handbook delivered with the product.

# System Overview

## **1. Product Appearance and Type Nomination:**

| Install at the machin | rope hitch in<br>eroom  | ECW-Z1000                                        |                                                      |                                                  |  |
|-----------------------|-------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------|--|
| Applicatio            | on Range                | Be applied to elevator<br>There is a 12-meter-lo | of 2:1 drive with the rope ng cable with the sensor. | hitch in machineroom.                            |  |
| Controller Appearance |                         |                                                  | See figure                                           | [2] for detail                                   |  |
| Sensor Appearance     |                         |                                                  |                                                      | E-0-0-0-                                         |  |
|                       | Ordering<br>Type        | ECW-Z1000-A                                      | ECW-Z1000-B                                          | ECW-Z1000-D                                      |  |
| Product               | Sensor Type             | Select"Disc" type Intelligent<br>Load            | Select Character "王" type<br>Intelligent Tension     | Select Character "—" type<br>Intelligent Tension |  |
| nomination            | Detailed<br>Explanation | See [3A.2]                                       | See [3B]                                             | See [3D]                                         |  |

## 2.Installing Method and Working Principle of "ECW-Z1000"

With the constantly development of elevator technology, the impact of elevator weighing device on elevator performance can not be neglected. The requirement of elevator for weighing devices with high high reliability and multi accuracy. functions becomes extremely urgent. Presently, the progress of sensor technology and microcomputer is ceaseless. With the adoption of highly accurate



system installing position; sensor ECW-Z1000 installed at the rope hitch in machineroom.

intelligent "tension" or "load" and "stress" sensors, the electric signal produced by elevator car load changing is tested and inspected. System sensor installed at the traction rope hitch: Type"Z1000": There is a 12-meter-long signal transmitting cable with the sensor. And the single-chip built in the controller may do scientific calculations fulfilling the aim of weighing the effective in elevator car.

## **3.Illustration of the Appearance of Controller:**



Note: ①Hereinafter, Pj1.1 means the 1st place of Pj1 wiring port, successively analogizing. Its arrangement in the control is from left to right. ②The size of the whole set is shown in section 13, charpter 15 in detail.③Terminal wiring is described in section 2, charpter 2.

**4. Illustration of the Appearance of Controller and Install Method:** (Take Z2000# for example, Z1000# is installed in the same way)

- A. Standard "Disc" type Intelligent loading Sensor
  - 1)Assembling Diagram: See Fig. [3A]



ipecial Explanation on the customer-made rope shackle clamp: (1) Based on the concrete condition ; (2) The distance between ine "A" and "B" in the above figure should be divided equally referring to the center of the traction force; (3) Assure to fix the sensor ndits auxiliary support well with the screw sets along with the system; (4) The pull rod through hole should be larger  $3 \sim 5$  mm than the riginal hole for the convenience of the movement of the pull rod (5) The clamp thickness should not be less than 15 mm.

② Appearance and Structure of Z1000# Sensor: See Fig. [3A.2]



B. Standard Character " $\pm$ " type Intelligent Tension Sensor











should be larger 3~5mm than the original hole for the convenience of the movement of the pull rod.3The clamp thickness should not be less than 15mm

## 5. Description of the System Controller Terminals:

Pj1, Pj2, Pj3, Pj4, Pj5, Pj6 are wiring terminals



#### **Detailed Explanation of the Controller Terminals:**

|         |       | Function |                   | on       | Explanation                                              |      |                   |  |
|---------|-------|----------|-------------------|----------|----------------------------------------------------------|------|-------------------|--|
| PJ1.1~2 | Relay | y J3     | Dynamic Close     | Output   | System Default: <b>Overload</b> Output;                  | Max. | Loading Capacity: |  |
| PJ1.3~4 |       |          | Dynamic           |          |                                                          |      |                   |  |
|         |       |          | Open              |          |                                                          | DC/  | AC 48V/500mA;     |  |
| PJ2.1   | СОМ   | commor   | n terminal of Rel | ay J2、J3 | System Default of "J1": No load Dynamic Close output;    |      |                   |  |
| PJ2.2   | J1    | Rela     | y Output Te       | erminal  | System Default of "J2": Rated load Dynamic Close output; |      |                   |  |

| PJ2.3   | J2 Relay Output Termir           | ut Terminal Usage: To be programmed as "No load~Ov |                     |       |                      | "output signal, participating elevator logic control    |
|---------|----------------------------------|----------------------------------------------------|---------------------|-------|----------------------|---------------------------------------------------------|
|         | Parameter P5=2                   | Pa                                                 | Parameter P5=3      |       | ParameterP5=4        | 1.No wiring means unneeded floor compensation           |
| PJ3.1~2 | Down leveling signal(Up          | Signal o                                           | of Elevator ente    | ring  |                      | for system. 2.Using this signal, System may do          |
|         | leveling Sensor)                 | leveling z                                         | one or door zone    |       |                      | floor-by-floor compensation accurately for elevator     |
| PJ3.3~4 | Up leveling signal (Down         | Elevator U                                         | Jp traveling Signal |       |                      | to interpolate the floor error caused by the dead       |
|         | leveling Sensor)                 |                                                    |                     |       |                      | weight of cable, wire rope and compensation cable.      |
| PJ3.5~6 | Main Stop Signal with th         | ne enabli                                          | ng method deci      | ded   | For fuzzy            |                                                         |
|         | by high voltage lev              | vel of                                             | parameter           | P3.   | compensation method  | 3.For this terminal, default input signal is enable for |
|         | P3="0""indicates low volt        | age level                                          | enabling.           |       |                      | positive skipping, the enabling way of PJ3.1~2,         |
| PJ4     | Lock output signal control       | l termina                                          | l. Parallel conne   | ectio | on in system door    | PJ3.3~4 depends on parameter "PJ".                      |
|         | lock signal circuit. Note the    | e connec                                           | ting polarity.      |       | ,                    |                                                         |
|         | 5                                |                                                    | 01 9                |       |                      | 4.Enabling property of this terminal depends on         |
|         |                                  |                                                    |                     |       |                      | parameter P5.For really wiring, see the attached        |
|         |                                  |                                                    |                     |       |                      | figure.                                                 |
| Pj5     | Intelligent Sensor Communication | on Termin                                          | al                  |       |                      |                                                         |
| Pj6     | System Power Supplying Termi     | nal                                                | AC 20~26V,          | / 20  | 00mA or DC 24 $\sim$ | 32V / 200mA                                             |

• DAbsolutely don't connect the output terminals (except "PJ6") of this device to the external power source directly and the resulted permanent damage to the device is beyond our responsibility.

②Attention: As for the input signal of "Pj4、Pj3" terminals, a requirement of polarity is needed. Pj3.1、3、5 and Pj4.1 are "+", and the corresponding circuit voltage should be "DC 12~32V".

# Installation and Adjustment

## 6. System Construction and Installing Method Schematic Diagram:

(D)Schematic Diagram of the appearance of the whole set: Controller Section See Fig. [2]

②Sensor Section: "Disc"type See Fig. [3A]; "±"type See Fig. [3B]; "Convex"type see Fig. [3C]; "−"type see Fig. [3D];

| ③Schematic Diagram of C             | Character " $\pm$ " type load sensor installing method | See Fig. [3A.1]; |
|-------------------------------------|--------------------------------------------------------|------------------|
| (4) Schematic Diagram of            | "Disc" type load sensor installing method              | See Fig. [3B];   |
| <sup>(5)</sup> Schematic Diagram of | "Convex" type load sensor installing method            | See Fig. [3C];   |
| <sup>(6)</sup> Schematic Diagram of | "—" type load sensor installing method                 | See Fig. [3D];   |

## 7.Install Method of Sensor and Controller:

①Adjust traction ropes so that the pull of each rope keeps coincident.

- **②A.** "Disc" type sensor is installed at the place of the elevator- car-side traction rope shackle according to Fig.[3A.1] and Fig.[3A.2] with customer-made shackle clamp plate.
- **B.** Character " $\pm$ " type sensor is installed at the place of the elevator-car-side traction rope shackle according to Fig. [3B], See explanations in Fig. [3B] for more details.

**C.** "Convex" type stress sensor is installed in the middle of the elevator-car-top bearing beam according to Fig.[3C], See explanations in Fig. [3C] for more details.

- **D.** Character "—" type sensor is installed at the place of the elevator- car-side traction rope shackle according to Fig. [3D] with customer-made shackle clamp plate.
- (3) Control Section should be installed in the control cabinet placed in machineroom, being away from equipments such as the transformer, speed regulator of elevator electric control system. Under any condition, sensor and controller should be far away from heat source.
- (1) It would be better not to put the connecting cable between sensor and controller in the same wire duct with dynamic power of 110V or 220V.
- ⑤Connect the sensor wiring terminal to PJ5 terminal of the control, simultaneously, connect power line to PJ6 according to system requirement. Pay attention to the voltage level.
- <sup>(6)</sup> When no error is inspected, power on the system and the corresponding operation patterns will be displayed on the control.

## 8.Adjustment Method and Description of the System (Autotune Operation)



#### 2 Lock the dead weight of elevator car:

Let personnel leave car and car top and stop elevator at the bottom floor leveling position. Then adjusting personnel enters machineroom. When [Lo] is displayed on the control, press key [] and [] is simultaneously. When system displays "Pn", test and inspection is completed.



### **④** Rated Load Autotuning Operation Mode:



① The system resets automatically, this moment,  $[FY] \rightarrow [L4]$  will be displayed. By now, the whole autotuning course is finished.

② In autotuning condition, if there is any operation failure or system abnormality,(displaying [[EF]]), start the autotuning of this item from the very beginning once again.

### System adjustment under other conditions:

For following reasons, the parameters of this system need re-modifying in the way described above.

- 1) Elevator car decoration changing causes its dead weight change.
- 2) Larger unbalance appears among traction ropes.
- 3) Sensor of weighing device becomes flexible.
- 4) Overrunning at the top or at the bottom appears.

# **Operation Parameters Adjustment and the Implication**

(6)

# **9. System Operation Parameters Adjustment** (Annotation: \* represents for a hexadecimal value of " $0 \sim 9.A \sim F$ ".)

- ①Simultaneously press ▲ and ▲ and ▲ on system control keypad to power on , this moment 〖PP〗 will be displayed aglimer, that means entering operation parameters modifying status.
- $(\mathbb{P}^*)$  and  $[\mathbb{V}]$  buttons, system will display  $[\mathbb{P}^*]$  and [\*\*] alternately.  $[\mathbb{P}^*]$  is an indication of system operation parameters; [\*\*] is the interior data value of  $[\mathbb{P}^*]$ .
- ③When displaying  $\llbracket P^* \rrbracket$ , press  $\llbracket ▼ \rrbracket$ , indication of system operation increases; press  $\llbracket ▲ \rrbracket$ , indication decreases.
- (4) When displaying [] \* \* ], press  $[] \lor ]$ , data value increases; press  $[] \blacktriangle ]$ , data value decreases.
- ⑤Release buttons, system displays operation indication and configuring data alternately.
- <sup>(6)</sup>To modify other configuring datum, repeat the operation in item 3, item 4, item 5.
- (T At the moment system displays [P\*], Simultaneously press [ ] and [ ], system will save modified datum for future use. This moment, system displays [Pn] for 1 second. System operation parameters modification of this time is completed.

Example: Modify parameter PJ to 03; (Pj3.1<sup>2</sup>2, Pj3.3<sup>4</sup> enabling for low voltage level compensation signal)

- ①Simultaneously press 【▲】 and 【▼】 on system control keypad to power on , this moment 〖PP〗 will be displayed aglimer, that means entering modifying status.
- ②Release  $[ \blacktriangle ]$  and  $[ \blacktriangledown ]$  buttons, system will display [ P0 ] and [ \*\* ] aglimer
- ③When displaying [P0], press [V] to increase it to [Pj];
- (4) Release button [  $\checkmark$  ], system alternately displays [Pj] and [\*\*].
- (5) When displaying [\*\*], press  $[\mathbf{V}]$  or  $[\mathbf{A}]$  to regulate its value as [03].
- O Release button, system alternately displays  $\llbracket P\, j\, \rrbracket$  and  $\llbracket\, 03\, \rrbracket$  .
- ( T At the moment when system displays [PH], Simultaneously press [ ] and [ ], system will save modified datum for future use. This moment, system displays [Pn] for 1 second. System operation parameters modification is completed.

**10. Implication of parameter P:** Normally, it is unnecessary to modify parameter after "PO". System may automatically modify it in the course of Autotuning.

(1)Directions of Parameter PO [System Operation Mode]:

| Setting | Explanation                                                               | Default Setting      | Normal Value          |
|---------|---------------------------------------------------------------------------|----------------------|-----------------------|
| 00      | Normal Operation (Automatically modify by system after autotune.)         |                      |                       |
| 01      | Sensor positioning ,System self-learning                                  |                      |                       |
| 09      | Options for dealing with abnormality when Selecting " $\pm$ " or "Convex" |                      |                       |
|         | type intelligent sensor.                                                  |                      | 00                    |
| 0A      | Forcibly set system settings as default values                            | (Sensor Positioning) | System Auto Modifying |

|   | Setting                                                                                                                               | Explanation                                                                                                                     | Default Setting              | User Setting |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|--|--|--|
|   | 01-05/10                                                                                                                              | <ul><li>10 - Select "100% load" self-learning mode;</li><li>02 - Select "20% load layer by layer" self-learning mode;</li></ul> | 10(Rated load<br>Autotuning) |              |  |  |  |
| e | ections of Parameter P2 [The Highest Elevator Landing Setting Mode](Automatically modify them in the course of Autotuning by system): |                                                                                                                                 |                              |              |  |  |  |

(2)Directions of Parameter P1 [System Rated Load Setting Mode]:

(3)Dire

| Setting | Explanation                                                                                                                  | Default Setting | User Setting                                                      |
|---------|------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------|
| 01~32   | Set the number of elevator stops: select 01 to turn off the layer by layer compensator, and the PJ3 input signal is invalid; | 99(Floor)       | During self-learning, the<br>system will automatically<br>correct |

(4)Directions of Parameter P3 [Setting Elevator Shutdown Main Floor]:

| Setting | Explanation                                  |                                       | Default Setting      | User Setting          |
|---------|----------------------------------------------|---------------------------------------|----------------------|-----------------------|
|         | Higher Bits                                  | Lower Bits                            |                      |                       |
|         | 0— "Pj3.5、Pj3.6" effective for Low           | Setting elevator main floor. Example: | 01(landing)          | System auto           |
| 01~19   | Voltage Level;                               | Selecting 2 means there is a basement | Connection is valid. | modification in fuzzy |
|         | 1— "Pj3.5、Pj3.6" effective for High          | floor for this elevator.              | Base station is on   | compensation          |
|         | Voltage Level;                               |                                       | level 1.             | autotuning            |
|         | Example: Selecting 12 means"Pj3.5, Pj3.6     | " effective for Low Voltage Level and |                      |                       |
|         | there is a basement floor for this elevator. |                                       |                      |                       |

(5)Directions of Parameter P4 [Time Parameter for Floor-by-floor Compensation]:

| Setting      | Explanation                           |                         | Default Setting                           | User Setting |
|--------------|---------------------------------------|-------------------------|-------------------------------------------|--------------|
|              | Higher Bits                           | Lower Bits              | 42                                        |              |
| $00 \sim 99$ | Anti-interference protection          | Control Factor of fuzzy | Anti-interference protection time of      |              |
|              | time by floor : $0 \sim 9 \times 0.5$ | compensation: 0~3       | each floor is 2.0 seconds; Control Factor |              |
|              | Second;                               | -                       | of fuzzy compensation is 2.               |              |
|              | 0-Unenabling protection time          | 2                       |                                           |              |

(6)Directions of Parameter P5 [Selection of Floor compensation input signal function] (Automatically modify in the period of Autotuning by system):

| Setting | Explanation  |         |                  |                   |              | Default    | User Setting     |
|---------|--------------|---------|------------------|-------------------|--------------|------------|------------------|
|         | 00           | 01      | 02               | 03                | 04           | Setting    |                  |
|         | Allow auto   | Disable | Un/down leveling | Door zone +       | Fuzzy        |            |                  |
| 00~03   | deciding     |         | step counting    | running direction | compensation | 00         | Auto modified by |
|         | compensation |         | control          | Control           |              | (Auto      | system in the    |
|         | method       |         |                  |                   |              | Measuring) | period of [[Lo]] |

| Notes: 1. See Section 3, Chapter 5 and attached drawings for more details;         | displaying. |
|------------------------------------------------------------------------------------|-------------|
| 2. Elevator of serial communication control may use "03" or "04' operation         |             |
| method. Running direction Signal may be parallel connected to the forward rotation |             |
| command signal of the given inverter.                                              |             |

(7)Directions of Parameter P6 Relay "J1, J2, J3" logic state setting] :

| Setting      |             | Exp   | olanation     |               | Explanation   | User Setting   |  |
|--------------|-------------|-------|---------------|---------------|---------------|----------------|--|
|              | Higher Bits |       | Lov           |               |               |                |  |
|              |             | state | J3            | J2            | J1            |                |  |
|              |             | 0     | Dynamic Close | Dynamic Close | Dynamic Close | 20             |  |
|              |             | 1     | Dynamic Close | Dynamic Close | Dynamic Open  | (Relay closing |  |
|              |             | 2     | Dynamic Close | Dynamic Open  | Dynamic Close | exportation    |  |
| $20 \sim 27$ |             | 3     | Dynamic Close | Dynamic Open  | Dynamic Open  |                |  |
|              |             | 4     | Dynamic Open  | Dynamic Close | Dynamic Close |                |  |
|              |             | 5     | Dynamic Open  | Dynamic Close | Dynamic Open  |                |  |
|              |             | 6     | Dynamic Open  | Dynamic Open  | Dynamic Close |                |  |
|              |             | 7     | Dynamic Open  | Dynamic Open  | Dynamic Open  |                |  |
|              |             |       |               |               |               |                |  |
|              |             |       |               |               |               |                |  |
|              |             |       |               |               |               |                |  |
|              |             |       |               |               |               |                |  |
|              |             |       |               |               |               |                |  |
|              |             |       |               |               |               |                |  |
|              |             |       |               |               |               |                |  |

| Setting                                   | Explanation                                                                                                                                                                                                                                                                                                                                                                                  | Default Setting   | User Setting |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
|                                           | When the load is $\geq$ capacity load $\times$ P7%, output "J1" signal.                                                                                                                                                                                                                                                                                                                      | 05                |              |
| 00~99<br>A0~A9<br>b0~b9<br>C0~C9<br>d0~d9 | 00~99: The action value is 0~99% of the load action;<br>A0~A9: The action value is 100~109% of the load action;<br>b0 to b9: The action value ranges from 110 to 119%.<br>C0~C9: The action value is 120~129% of the load action;<br>d0~d9: The action value is 130~139% of the load action;<br>E0~E9: action value in 140~149% load action;<br>F0~F9: action value in 150-159% load action; | set "J1" 05% load |              |
| E0 <sup>-</sup> E9                        | P7=80: For 1T payload, 800Kg, J1 system action                                                                                                                                                                                                                                                                                                                                               |                   |              |
| F0~F9                                     | P7=A5: For 1T payload, 1050Kg, J1 system action                                                                                                                                                                                                                                                                                                                                              |                   |              |
|                                           | P7=C5: For 1T payload, 1250Kg, J1 system action                                                                                                                                                                                                                                                                                                                                              |                   |              |

(8)Directions of Parameter P7 [Setting Relay "J1" operation condition]:

(9)Directions of Parameter P8 [Setting Working condition of Relay "J3"]:

| Setting    | Explanation                                                                           | Default Setting         | User Setting |
|------------|---------------------------------------------------------------------------------------|-------------------------|--------------|
| Same as P7 | Same as P7:When the load is $\geq$ capacity load $\times$ P8%, the output "J2" signal | 90<br>Set "J2" 90% load |              |
|            | Č                                                                                     | action                  |              |

(10)Directions of Parameter P9 [Setting No load Parameter]:

| Setting   |   | Explanation                                                                           | Default Setting                    | User Setting |
|-----------|---|---------------------------------------------------------------------------------------|------------------------------------|--------------|
| Same as P | 7 | Same as P7:When the load is $\geq$ capacity load $\times$ P9%, the output "J3" signal | A5<br>Set "J3" 105% load<br>action |              |

(II)Directions of Parameter PA [Light load Parameter Setting]:

| Setting         | Explanation                                                              | Default Setting  | User Setting |
|-----------------|--------------------------------------------------------------------------|------------------|--------------|
|                 | After the set time arrives, the system starts to automatically zero-load | 00(Do not start) |              |
| 00 ~ 96 (hours) | work. 00 - The system does not start the no-load automatic zeroing       |                  |              |
|                 | function;                                                                |                  |              |
|                 | 12 to 96 - After the system is powered on (12 to 96 hours), the          |                  |              |
|                 | system starts to detect the load retention time during no-load return to |                  |              |
|                 | zero.                                                                    |                  |              |

(12) Directions of Parameter PB [Semi load Parameter Setting]:

| Setting              | Explanation                                                        | Default Setting | User Setting |
|----------------------|--------------------------------------------------------------------|-----------------|--------------|
| $10 \sim 90$ minutes | After the automatic zeroing time arrives, the system load does not | 30 minutes      |              |

|                                                               |  | change within this time, and the system will allow automatic no-load zeroing to begin. |  |  |  |  |
|---------------------------------------------------------------|--|----------------------------------------------------------------------------------------|--|--|--|--|
| (3)Directions of Parameter PC [Heavy load Parameter Setting]: |  |                                                                                        |  |  |  |  |
|                                                               |  |                                                                                        |  |  |  |  |

| Setting      | Explanation                                                            | Default Setting        | User Setting |
|--------------|------------------------------------------------------------------------|------------------------|--------------|
|              | When the absolute value of 7 and 8 is greater than this set value,     | 05%                    |              |
| $03 \sim 20$ | At present, the load ratio of the original no-load value system starts | no-load deviation   is |              |
| (%)          | to zero work immediately.                                              | greater than 5         |              |
| · /          |                                                                        | %, system              |              |

(14)Directions of Parameter Pd [System Overloading Factor]:

| Setting |    | Explanation | Default Setting | User Setting                  |  |
|---------|----|-------------|-----------------|-------------------------------|--|
|         |    | PX.1~2      | PX.3~4          | 00<br>DV 1 2 DV 2 4           |  |
| 00~03   | 00 | Active high | Active high     | PA.1~2, PA.3~4<br>Active high |  |
|         | 01 | Active low  | Active high     | ricuve ingh                   |  |
|         | 02 | Active high | Active low      |                               |  |
|         | 03 | Active low  | Active low      |                               |  |

(15)Directions of Parameter PE [No-Load Auto Zeroing Time Interval]:

| Setting |                                                                                                                                  | Expla                                   | nation                   | Default Setting | User Setting                                                                      |                                                      |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|-----------------|-----------------------------------------------------------------------------------|------------------------------------------------------|--|--|
|         | D7~D4                                                                                                                            | D3                                      | D2                       | D1              | D0                                                                                | 81                                                   |  |  |
| 80~90   | 8                                                                                                                                | Sensor gai<br>adjustment<br>3 gain sele | n<br>Level 0 to<br>ction |                 | 0- Standard sensor<br>1- "Convex" stress sensor<br>acquisition anomaly correction | Standard sensor, 2<br>level incremental<br>selection |  |  |
|         | Suggestion: Under normal circumstances, users do not need to adjust this parameter, any objection, please manufacturer directly. |                                         |                          |                 |                                                                                   |                                                      |  |  |
|         | Description: For the "C-type" sensor, "81" indicates the tensile force; "80" indicates compressive force                         |                                         |                          |                 |                                                                                   |                                                      |  |  |

Attentions: (1)When selecting not indicated settings, system will not normally operate.

<sup>(2)</sup>No load auto zeroing parameters PA, PB and PC should be used cautiously because of the cause variety of elevator no load point drifting. It is recommended for the user to allow or forbid this function according the concrete conditions.

③Even if **No load auto zeroing operation enabled**, in the course of elevator periodical maintenance, auto tuning operation of this system should be redone without exception.

# **Explanation of Displaying Code:**

**11.System Normal Operation Code:** 

| 【L <b>0</b> 】 | 【L1】             | 【L2】                  | 【L3】             | <b>[[L4]</b> ]   | [[LF]]          |
|---------------|------------------|-----------------------|------------------|------------------|-----------------|
| No loaded Car | Light Loaded Car | Semi Loaded Car       | Heavy Loaded Car | Rated Loaded Car | Over Loaded Car |
| 1 D' 1 ' "T   |                  | · <b>FAN</b> 1 (1 11) |                  | 1 1 1 1 1 1      | 1 . "1110500 "  |

Displaying "HJXXXXX" when pressing ▲ button indicates present car effective load. For instance, displaying "HJ0520 indicates the load of 0520kg.

3. Displaying "0.0." in fuzzy compensation indicates compensation is effective. Displaying "0.1." indicates elevator entering modifying zone.

## 12.Code for Other Operation and Failures

|    | Display Code | Indication                         |                                                          |                   | Solution                                                          |  |  |  |  |  |
|----|--------------|------------------------------------|----------------------------------------------------------|-------------------|-------------------------------------------------------------------|--|--|--|--|--|
| 1  | FY           | System St                          | System Startup                                           |                   |                                                                   |  |  |  |  |  |
| 2  | PC           | Sensor Re                          | nsor Resetting                                           |                   |                                                                   |  |  |  |  |  |
| 3  | PP           | Get into the                       | Get into the status of operation parameters modification |                   |                                                                   |  |  |  |  |  |
| 4  | PL           | Autotunin<br>paramet               | g No load<br>ers                                         | (Still Displation | aying indicates preparation status, flashing displaying indicates |  |  |  |  |  |
| 5  | PH           | Autotunin                          | g Rated                                                  | ed                |                                                                   |  |  |  |  |  |
|    |              | load para                          | ad parameters                                            |                   |                                                                   |  |  |  |  |  |
| 6  | LL           |                                    | Too big P                                                | ositioning        | Sensor having no load                                             |  |  |  |  |  |
| 7  | LH           | Installation<br>and<br>positioning | Too small                                                | Positioning       | ng Sensor overload                                                |  |  |  |  |  |
| 8  | Lo           |                                    | Accurately Position                                      |                   |                                                                   |  |  |  |  |  |
| 9  | LP           |                                    | Interior Auto Correction                                 |                   |                                                                   |  |  |  |  |  |
| 10 | LY           |                                    | Forcibly skip sensor interior auto correction            |                   |                                                                   |  |  |  |  |  |
| 11 | P*           | System Configuration Indication    |                                                          |                   |                                                                   |  |  |  |  |  |
| 12 | Pn           | Saved                              |                                                          |                   |                                                                   |  |  |  |  |  |

<sup>2.</sup> Displaying ".**※**. **※**. " when pressing **【▼】** button or in the course of landing changing indicates present system compensating landing. Adjusting Personnel may judge whether system compensating landing tracing is right or not by its numerical value. Note: This option is just for floor-by floor compensation method.

|    | Display Code | Indication                    | Solution                                                  |  |  |  |  |  |
|----|--------------|-------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| 13 | PO           | Real-time car set "O" opera   | tion                                                      |  |  |  |  |  |
| 14 | EA           | Saving Failure                | Re-Modifying operation parameters                         |  |  |  |  |  |
| 15 | EJ           | Without this system setting   | Check System Settings                                     |  |  |  |  |  |
| 16 | EH           | Applied Overflowing Pressure  | Sensor Standing Pressure beyond its bearing range         |  |  |  |  |  |
| 17 | EL           | Applied Insufficient Pressure | No applied pressure to Sensor                             |  |  |  |  |  |
| 18 | EE           | No landing of this code       | Make certain PC signals abnormality or no load autotuning |  |  |  |  |  |
|    |              |                               | normal or not                                             |  |  |  |  |  |
| 19 | EF           | Memorizing abnormally         | Repeat this operation.                                    |  |  |  |  |  |
| 20 | ES           | Communication Failure         | Carefully check wiring between sensor and control.        |  |  |  |  |  |

Technical File of ECW-Z1000 Intelligent Elevator Weighing Device — [User's Guide]

# How to do?

## **13.Brief Analysis of Other Conditions:**

(1)Bad system Operation Stability with the main indication of large output fluctuation in the condition of fixed load and elevator motionless?

Check if PJ6 power supply source fulfils system requirements?

- (2)After long-term of operation, system no load zeroing point appears larger deviation?
  - May be caused by the reason described in section 8, chapter 8. Set system Autotuning mode to calibrate again, or startup
  - parameter " $PA \neq 0$ " to realize the function of system no load auto zeroing.
- (3)System displaying failure code  $\mathbb{Z}EE\mathbb{Z}$  ?

Input signal of terminal Pj3 on the control or unreasonably setting.

- (4)When selecting floor indication step counting control method, floor-by-floor compensation consistency is bad? *Whether up or down landing signals or leveling signal is normally wiring, Setting of parameter P5 is reasonable?*
- (5) Traveling Up and down with the same load and stopping at the same floor, but the weighing result is different?
  - (1) Lift rope pull is not symmetrical, adjust please.
  - (2) Elevator guide shoes are too tightened, running friction is large. It is recommended to adjust or modify relevant mechanical part to make it move flexible, then operate the system to autotune again.

(6)System output signal doesn't change linearly along with load? Maybe system sensor damaged.

(7)How to descry present effective load of elevator car?

- (1) In the period of system normal operation, press button 【
   J. This moment, system displays 〖HJ〗→ 〖\*\*〗→ 〖\*\*〗
   For example : displaying 〖HJ〗→ 〖09〗→ 〖50〗
   indicates a car with rated load of 1000 Kg presently bearing an effective load of 950Kg.
- (2) If elevator effective load is not 1000 Kg, it may be decided after system autotuning operation is finished by modifying parameter "P1".
- ③ Because of various impacts from exterior environment, displayed data may fluctuate in a small scope.
- (8)When elevator is motionless, weighing signal is normal. But in the course of door opening, it is abnormal? Elevator door operation system causes relative car weight offset. It may be controlled by adopting door opening/closing relay output signals+ door lock signal jointly participating system Pj4 locking.

(9) How to determine car dead weight(This operation is effective for "Disc"type sensor and "ECW-Z1000#D"type)?

- a. After modified parameter "P0=11" is saved, this moment, system displays  $[HP] \rightarrow [**] \rightarrow [**]$ ; For example: displaying  $[HP] \rightarrow [15] \rightarrow [10]$  means car dead weight of 1510Kg.
- b. Because of various impacts from outer environment, displayed data may fluctuate in a small scope. Users may adopt algorithm of average value of several time to deal with inspection results. Meanwhile, inspection accuracy may be influenced by self made traction rope clamp and traction ropes tension equality.

*c. Press* **[**▲**]** *or* **[**♥**]** *ad arbitrium, system may reset to original setting.* 

(10) During system operation, analog output is abnormal, repeatedly resetting or abnormal coordination with speed regulator?

May be caused by crossing and interfering system power source. Select another set of power source to supply power to system, or equip AC/DC 24V/300mA exterior power source to supply power.

## 14. How to do Re-Autotune operation for system?

- Method 1: Simultaneously press 【▲ 】 and 【▼ 】 on system control panel to power on. This moment, system aglimmer displays [PP]. Keep 15 seconds, system will display [Pn]. On that occasion, all operation parameters reset to default settings.
- **Method 2:** Modifying parameter P0=0A will reset system immediately to default status. But for users with specified code, it is necessary to modify parameter P0 as appointed code. Detailed operation is

described in chapter 9.

## 15. How to adopt 20% rated load for rated load autotune?

After system displaying [Lo], modify parameter "P1=02". Do no load autotuning operation as described in chapter 6. In the period of displaying [PH], load elevator car with a weight equal to 20% of rated load to do rated load autotuning operation. When operation is finished, [L1] is displayed.

## 16.How to do "weight setting" autotune for D type (i.e. character "---" type) sensor? (Just

limited to Z1000#-D. Affected by mechanical system, having certain error)

After system displaying [Lo], modify parameter "P1=elevator effective load" (For 1ton, input10; 3T, input 30). Do no load autotuning operation as described in chapter 5. When operation is finished, [J0] is displayed.

## 17. How to get the version code of the product?

After power off, press [ V ] to supply power. System displays [ 1.0 ] indicating the corresponding User's Guide of this product being Version "V1.0".

## System Features

## 18. Main Characteristic:

- (1) Equipped with various kinds of sensors:
  - A. Selecting super thin "Disc" type intelligent load sensor, it is unnecessary to change the pull rod of traction rope shackle, directly inspect elevator car load change;
  - B. Selecting Character " $\pm$ " type intelligent tension sensor, installation is much easier.
  - C. Selecting "Convex" type intelligent stress sensor, much more convenient for complete elevator manufacturers to select.
  - D. Selecting super thin Character "--" intelligent load sensor, directly setting load, adjusting becomes more advantageous.
- (2) Weighing range is wide (effective load of 500Kg $\sim$  5500 Kg), high-accuracy position, intelligent temperature compensation.
- (3) Electric property complies with the requirements of "International Electrotechnical Commission (IEC)" Standard.
- (4) Inner core consists of highly accurate load sensor and high performance single-chip micro-computer. All operation parameters can be set on field.

- (5) Auto on-site mensuration of various compensation methods, boosting requirement of high accuracy weighing signal of elevator system.
- (6) System may do scientific calculation according to mathematical equations with the function of noload auto zeroing, automatically modifying measuring error.
- (7) Directly displaying present effective load. Some types may directly measure dead weight of elevator car for the benefit of users.
- (8) Field adjustment may select 20% or 100% rate load autotuning method or load setting method(just for "D" type), being easily adjusted and operated.
- (9) Independent development of the method of *Programmable Output Signal Control* is suitable for all the requirement of traction elevators with various kinds of fixed car platform.
- (10) Having the function of operation parameters auto modification, auto accommodation to multi methods of intelligent floor compensation function, being applicable to traction elevators of less than 30 landings.
- (1) Distinctive design structure of sensor+ controller, only 2 connecting wires between sensor and controller wiring simply.
- (12) The whole shoot starts from users' point of view, easy installation and adjustment, decreasing users' additional cost in use, high ratio of performance to price.

## **19.Technical Specifications:**

| 1. | Application   | Being applicable to all fixed car platform elevators (less than 60 landings) with the load of                                                                                      |  |  |  |  |  |  |
|----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    |               | $500 \text{ kg} \sim 5000 \text{ kg}$ .                                                                                                                                            |  |  |  |  |  |  |
| 2. | Floor         | Auto accommodating to the following compensation methods: $\textcircled{1}$ Up and Down leveling; $\textcircled{2}$                                                                |  |  |  |  |  |  |
|    | Compensation: | Up command + door zone; ③Fuzzy and intelligent.                                                                                                                                    |  |  |  |  |  |  |
| 3. | Sensitivity:  | Elevator Rated Capacity/200 (Example: The rated capacity is 1000 kg, and the sensitivity is                                                                                        |  |  |  |  |  |  |
|    |               | 5 kg ) [This data may be affected by elevator mechanical performance.]                                                                                                             |  |  |  |  |  |  |
| 4. | System Error: | ≤0.5%(5~40°C)                                                                                                                                                                      |  |  |  |  |  |  |
| 5. | Non-Linearity | $\leqslant$ 0.5%                                                                                                                                                                   |  |  |  |  |  |  |
| 6. | Compensation: | The method of circuit parallel connection is applicable to the signal source system of DC12-32V Also, the inner fault of this system doesn't affect the original operation mode of |  |  |  |  |  |  |
|    |               | elevator.                                                                                                                                                                          |  |  |  |  |  |  |

| 7.  | Output<br>Mode                                                                                                              | R<br>e<br>l<br>a<br>y | Programmable<br>universal signal                                                                                                                            | <ol> <li>3-channel programmable output modes are: No load, light load, semi full load, heavy load, rated load, overload (customer may set the changing range freely).</li> <li>Each channel can be programmed as dynamic Close or Open contact.</li> <li>3Contact Capacity: DC/AC 48V/100mA</li> </ol> |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 8.  | 8. Ambient<br>Temperature: -20~                                                                                             |                       |                                                                                                                                                             | C                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 9.  | 9. Relative<br>Humidity: 20%~90%RH                                                                                          |                       |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 10. | 10. Reaction Time << 0.5 Second, The commun                                                                                 |                       |                                                                                                                                                             | nication distance between the intelligent and the control is 0~400m.                                                                                                                                                                                                                                   |  |  |  |  |  |
| 11. | 11. Power Supply: AC/DC24( $\pm 10\%$ )V / 200m                                                                             |                       |                                                                                                                                                             | nA                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 12. | 12. Installation<br>Place:                                                                                                  |                       | Sensor Section: At the place of traction rope shackle<br>Controller Section : Control Cabinet in machineroom. See the figure 3 for installing<br>dimension. |                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 13. | <sup>13.</sup> Overall Size: Sensor Section: See the figure [3]; Controller Section: $142 \times 90 \times 40 \text{ mm}^3$ |                       |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |

**\***: The intension exceeding the limit parameters listed above may result in the abnormality or permanent damage to the system.

## Promise

(1)If this system appears any quality problem of product itself in 1 year after delivery, it will be replaced freely (damage of the product seal will not be dealt with) °

(2)For any requirement of special functions, make it out by mail.

(3)Any system abnormality in adjustment or operation, please contact our company directly.

Technical File of ECW-Z1000 Intelligent Elevator Weighing Device — [User's Guide]

## Others:

| 1.Packing | Type A: | "Disc"type intelligent   | 1 | set | Type B:              | "王"type       | intell | igent  | 1 | set |
|-----------|---------|--------------------------|---|-----|----------------------|---------------|--------|--------|---|-----|
| List:     | load    | sensor                   |   |     | tension              | sensor        |        |        |   |     |
|           | Sensor  | Auxiliary Support        | 1 | set | Type C:              | intelligent s | stress | sensor | 1 | set |
|           | M10×3.  | 5mm Fastening Screw sets | 6 | set |                      |               |        |        |   |     |
|           | Type D: | "→"type intelligent      | 1 | Set | ECW-Z100             | 00 control    |        |        | 1 | set |
|           | load    | sensor                   |   |     |                      |               |        |        |   |     |
|           | M10×8   | Omm Fastening Screw sets | 2 | Set | $\Phi 4 \times 40$ m | nm Fastening  | Screw  | sets   | 4 | set |

User's Guide 1 piece

Technical File of ECW-Z1000 Intelligent Elevator Weighing Device — [User's Guide]





#### Recommended Application Range of this mode: All elevators with better mechanical installation characteristic.

Notes: 1.Directly parallel connect Pj3.5-6 and Pj4 to corresponding electric circuit. If user selects "mid landing" position signal, more accurate compensation effect may be received.

2.Pj3.5~6 must be connected to corresponding signal circuit. In fuzzy compensation autoluning, system auto modifies higher bits setting of parameter P3 to determine the enabling method of this signal(system default is that in the period elevator stops at main floor, "main floor position signal switch" is in closed condition.).

3.Voltage of terminal COM should be in the range of "DC12~32V" .



to add leveling device in hoistway; **Notes:** 1-Directly parallel connect Pj3.1~2, Pj3.3~4, Pj4 to corresponding electric circuit;

2Pj3.1~2, Pj3.3~4must be connected to corresponding leveling signal circuit. User may select Close Enabling or Open Enabling according to concrete conditions. Please notice manual setting parameter PJ(system default is that in the period devator leveling, "leveling signal switch" is in Closed condition.).
3.Voltage of terminal COM should be in the range of "DC12~32V".





Recommended Application Range of this mode: Elevator having "Door zone sensor" and "Upward running command" signals.

Notes: 1.Directly parallel connect Pj3.1~2, Pj3.3~4 and Pj4 to corresponding electric circuit. Meanwhile, pay attention to the "upward running" signal picking-up points "A" and "B". 2.Pj3.1~2 must be connected to door zone signal circuit, (system default is that in the period elevator leveling, "door zone signal switch" is in Closed condition.), Pj3.3~4 must be connected to upward traveling command signal circuit, (system default is that in the period of upward traveling, circuit "Pj3.3~4" exists an operation voltage of "DC12~32V" ). User may select Close enabling or Open enabling according to concrete condition. Pay attention to manual setting of parameter PJ. 3.Voltage of terminal COM should be in the range of "DC12~32V"